RIV - aktuální sběr
0587662 - ÚTIA 2025 RIV SE eng A - Abstrakt
Kárný, Miroslav - Gaj, Aleksej - Guy, Tatiana Valentine
Observables are proper models of measurements.
Quantum Information and Probability: from Foundations to Engineering (QIP24) - Posters. Vaxjo: Linnaeus University, 2024.
[Quantum Information and Probability: from Foundations to Engineering (QIP24). 11.06.2024-14.06.2024, Vaxjo]
EU-COST(XE) CA21169
Institucionální podpora: RVO:67985556
Klíčová slova: measurements * topology * numerical value
Obor OECD: Statistics and probability
https://library.utia.cas.cz/separaty/2024/AS/karny-0587662.pdf
Trvalý odkaz:
https://hdl.handle.net/11104/0355028
Uložit do RIV jako O
0604532 - ÚTIA 2025 RIV BE eng C - Konferenční příspěvek (zahraniční konf.)
Fakhimi Derakhshan, Siavash - Guy, Tatiana Valentine
Policy Learning via Fully Probabilistic Design.
DYNALIFE WG1-WG2 Interaction Meeting Data driven evidence: theoretical models and complex biological data. Brusel: The European Cooperation in Science and Technology (COST), 2024, s. 52-52.
[DYNALIFE Interaction Meeting Data driven evidence: theoretical models and complex biological data. Thessaloniki (GR), 05.06.2024-07.06.2024]
EU-COST(XE) CA21169
Institucionální podpora: RVO:67985556
Klíčová slova: Fully probabilistic design * imitation learning * Kullback-Liebler divergence * learning from demonstration * optimal policy.
Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
https://library.utia.cas.cz/separaty/2025/AS/guy-0604532.pdf
Trvalý odkaz:
https://hdl.handle.net/11104/0363792
Uložit do RIV jako O
0602819 - ÚTIA 2025 RIV US eng J - Článek v odborném periodiku
Ruman, Marko - Guy, Tatiana Valentine
Knowledge Transfer in Deep Reinforcement Learning via an RL-Specific GAN-Based Correspondence Function.
IEEE Access. Roč. 12, č. 1 (2024), s. 177204-177218. ISSN 2169-3536. E-ISSN 2169-3536
EU-COST(XE) CA21169
Institucionální podpora: RVO:67985556
Klíčová slova: Deep learning * Markov decision process * reinforcement learning * transfer learning * knowledge transfer
Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Impakt faktor: 3.6, rok: 2024 ; AIS: 0.67, rok: 2024
Způsob publikování: Open access
https://library.utia.cas.cz/separaty/2024/AS/guy-0602819.pdf
https://ieeexplore.ieee.org/document/10752398
Ruman, Marko
Trvalý odkaz:
https://hdl.handle.net/11104/0360153